Simulating the impacts of lifestyle-related risk factors on the health of Australians: Understanding the complexities of modelling disease prevention

Jacqui Davison , Danielle Currie, Jo-An Atkinson, Paul Crosland, Andrew Page, Mark Heffernan and Geoff McDonnell

Aim

The overarching aim of the Compelling Case for Prevention Project (CCP) is to pull together the 'big picture' of prevention
using system dynamics modelling, by developing a tool that allows decision-makers to explore the health and economic impacts of reducing the prevalence of different common risk factors. The goal is to establish a compelling argument for investment in prevention and to determine how best to target
strategies for maximum impact over time across the common strategies for maximum impact over tins.
risk factors for many chronic conditions.

Phase 2: Full national model
Building on the proof-of-concept model produced in Phase 1 , the Decision Analytics team at the Sax Institute was funded in 019 to undertake Phase 2. This phase involves expanding the model to include additional risk factors and multiple related interactions and combinations in producing chronic disease burden and related economic outcomes, that will be made available as an online interactive decision tool. Datasets from our key data sources - the Australian Burden of Disease Study (AIHW, 2019) and Global Burden of Disease Study (IHME/UW, 2019) - used to inform this model, are being analysed, transferred and calibrated to inform the more nuanced model structure of this model. The complexities in variable combination, epidemiology of disease attribution, consistency of data availability and model versus software capacity are current issues for model construction.

Phase 1: Proof-of-concept model
Phase 1 of this project (2016-2018) tested the feasibility of applying system dynamics modelling to the challenge of reducing the preventable component of Australia's growing
chronic disease burden. We used a participatory approach, with several workshops to engage population health researchers, national and state policy makers and advocacy organisations to develop a conceptual model and agree on selected national interventions to test. The first phase system
dynamics model incorporated current demographic trends, national burden of disease data, all-age prevalence data for 6 risk factors and overall Disability Adjusted Life Years (DALYs) over a 40-year time horizon.

Challenges in

 preventing chronic diseaseDespite many major chronic diseases being largely preventable through
changes to health behaviours (including, poor diet, physical inactivity, tobacco use, harmful alcohol consumption and obesity) only 1.3% of all health spending is currently directed towards prevention programs. The complex nature of the causal relationships between risk factor exposures and the development of

2

 3

The risk factor CDFs are then combined with disease-specific isk curves to estimate the proportion of the morbidity of a specific disease that can be I
 4

saxnstitule
(1)

