Collaborator's Login

Gestational diabetes through a systems science lens


Project title: Simulation modelling to support decision making in gestational diabetes care

Start date: April 2015

Estimated end date: 2018

What is the issue?

This PhD project tackles the growing problem of diabetes in pregnancy against the backdrop of increasing interest in systems science methods to examine complex problems.

Health systems are under continual pressure to provide accessible and effective health services with limited budgets. In this context, decisions regarding the best investment of health funds need to be well informed, reviewed regularly and aimed at achieving the greatest health gain for the investment.

The development and testing of methods and tools to inform decision-making processes is critical. The application of systems science and simulation modelling to the decision-making process is an innovative area with great potential value for those responsible for allocating resources.

Diabetes in pregnancy includes diabetes that develops, or is first diagnosed, during pregnancy and pre-existing type 1 and type 2 diabetes. Babies born to women who have diabetes during pregnancy are at short-term risk of high birthweight, birth complications and hypoglycaemia and at long-term risk of sustained impaired glucose tolerance. Women who have gestational diabetes are at higher risk of developing type 2 diabetes later in life.

Diabetes in pregnancy is increasing, and this is challenging the capacity of diabetes services. The increase is associated with an increase in risk factors such as overweight and obesity, older maternal age and increasing numbers of women from high-risk groups. New guidelines introduced in 2015 recommend that women who are high risk of developing diabetes in pregnancy should be screened in the first trimester. Consequently, these women are diagnosed with diabetes earlier in their pregnancy and need services for longer. Also, women are more frequently presenting with a combination of risk factors resulting in more complex care needs.

This all means that diabetes in pregnancy is having a significant impact on health service demand and resources, and the need to “do things differently”.

How is the project addressing the issue?

This project is applying systems science and simulation modelling to the problem of diabetes in pregnancy in the ACT as a case study.

Systems science is emerging as an effective way to examine both complex health problems and their context. It can be used to synthesise evidence, examine and compare the potential outcomes of interventions and guide the best use of limited resources through methods such as simulation modelling.

The project is using case study methodology to illustrate the strengths and weaknesses of simulation modelling as a tool to inform policy and program decision making.

Simulation modelling is being used to explore strategies for gestational diabetes diagnosis, early intervention and management. The modelling includes interaction between risk factors, the short-and long-term outcomes for mother and baby, and potential modes and timing of intervention.

Involving key decision-makers and experts in the model development and validation process increases the validity of the model for the local context. The model is therefore more likely to be useful to inform decisions about priority interventions and policies.

What are the expected outcomes?

The project will:

  • Produce a model that will be a functioning simulation tool to explore possible scenarios and the likely impact over time of each scenario on health outcomes for the mother and baby as well as service impacts for the health system
  • Engage with the stakeholder group to use the model to inform decision-making
  • Evaluate the use of participatory dynamic simulation modelling as a decision-support tool.

 

Updated May 2017

Project lead

Louise Freebairn, PhD Candidate, Prevention Centre, ACT Health

Project team

  • Dr Jo-An Atkinson, Prevention Centre
  • Professor Roland Dyck, University of Saskatchewan
  • Dr Paul Kelly, ACT Health
  • Professor Alison Kent, ANU Medical School, ACT Health
  • Dr Geoff McDonnell, Prevention Centre
  • Professor Christopher Nolan, ANU Medical School, ACT Health
  • Professor Nate Osgood, University of Saskatchewan
  • Adjunct Professor Lucie Rychetnik, Sax Institute and Prevention Centre

The project will:

  • Evaluate the effectiveness of participatory dynamic simulation modelling to inform program and policy decision-making
  • Produce a simulation model for diabetes in pregnancy to map the interactions between risk factors, and explore potential points of intervention and service implications
  • Produce a model that informs investments for intervention in diabetes in pregnancy. The model considers the short-, intermediate- and long-term implications of the increasing prevalence of risk factors for diabetes in pregnancy.
  • Internationally recognised experts in neonatology, diabetes, obesity, population health interventions, health economics and simulation modelling participated in a group model building process that started in May 2016
  • A series of workshops exposed participants to dynamic simulation modelling. Participants’ expert knowledge was used to map the complex problem of diabetes in pregnancy, to identify relevant literature and data sources, and to help quantify and verify the model
  • The model is being finalised in collaboration with sub-groups of participants focusing on evidence review and scenario development
  • Participant engagement with the finalised model is planned for later 2017.

Papers

Presentations

  • Freebairn L. Gestational diabetes through a systems science lens. Centre for Health Stewardship Research Group. Australian National University. 19 November 2015. Canberra.
  • Freebairn L. Simulation modelling: A systems approach to optimising the use of evidence to inform decision making in gestational diabetes care MODISM – 21st International Congress on Modelling and Simulation. 29 November 2015. Gold Coast.
  • Freebairn L. Simulation modelling as a tool for knowledge translation in health policy settings: a case study protocol. School of Medicine, University of Notre Dame, Research Conference 2016. 23 March 2016. Sydney.